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Abstract

Based on the minimum-range approach, a new geometric approach is proposed to deal with blind source separation in this paper. The
new approach is the batch mode of the original minimum-range approach. Compared with the original approach, the optimization algo-
rithm of the proposed approach needs no parameters and is more efficient and reliable. In addition, the extension of minimum-range-
based approaches is discussed. The simulations show the efficiency of the proposed approach.
� 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

Blind source separation (BSS) is a problem of recovering
the underlying sources only from their mixtures [1,2]. Its
linear instantaneous model is

xðtÞ ¼ AsðtÞ þ nðtÞ ð1Þ

where x(t) = [x1(t), x2(t), . . . ,xm(t)]T and s(t) = [s1(t), s2(t),
. . . , sn(t)]T are the observation vector and source vector at
time instant t, respectively. The matrix A 2 Rm�n is the mix-
ing matrix, and n(t) is the additive noise. In this paper, the
noise is neglected and we assume that m = n (If m > n, the
observations can be reduced by the principle component
analysis (PCA), thus m = n also holds finally). By this
assumption, BSS can be realized by finding a matrix B
(i.e. the so-called unmixing matrix) such that

y ¼ Bx ¼ PDsðtÞ ð2Þ

where P is a permutation matrix and D is a diagonal ma-
trix, thus the sources are recovered up to a permutation
and scale [3].

To BSS, some prior information is used to separate the
sources. For example, temporal structure, independence,
and sparseness. The approaches based on the temporal
structure are studied by Stone and Xie et al., and some sig-
nificant results have been reported in [4,5]. The approaches
based on the sparseness are generally studied in the context
of sparse component analysis (SCA), and some valuable
results can be found in [6–9]. In this paper, the sources
are assumed to be bounded and independent, thus the
approach proposed in this paper is also an alternative
method for independent component analysis (ICA). BSS
based on ICA has received many studies and new
approaches still arise by using some other prior informa-
tion [10–14]. These algorithms can be classified into the
geometric approaches to BSS, since they prefer to the geo-
metric information rather than the statistical characteris-
tics. However, most of them cannot work efficiently in
high dimensions (i.e. m > 3) [10,12,15].

In Ref. [11], the authors proposed a novel minimum-
range approach. The approach was proved to be reliable
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in theorem. However, its optimization algorithm, named
ICAForNDC, cannot guarantee the convergence of the
algorithm. This algorithm updates the observations by a
series of Givens rotations, and the rotation angle is deter-
mined by checking the values of pbt in the order of
t = 1, 2, . . .. Obviously a larger b results in a slower conver-
gence speed, but a smaller one may terminate the algorithm
by force even if the objective function has not converged to
its stationary point yet. (If b is too small, pbt will approach
zero after a few iterations, see Fig. 5 in [11] for details.) If
the convergence of the objective function is not guaranteed,
the correctness of the separation is not guaranteed. From
the above analysis, the value of b is crucial to that
approach, and the original approach has trouble in setting
the value of b.

This paper proposes a new geometric algorithm for BSS.
On the one hand, this algorithm is the batch separation
mode of the minimum-range approach. On the other hand,
the optimization algorithm proposed in this paper is more
efficient and reliable than the original algorithm.

2. The proposed algorithm

The unmixing matrix B can be factored as B = UW,
where W is the whitening matrix and consequently the
matrix U is constrained to be orthogonal. In other words,
W de-correlates the mixtures and then U rotates the mix-
tures. Assume that s1 and s2 are two uniformly distributed
signals and they are mutually independent. We see that
their scatter plot forms a square whose edges are parallel
with the corresponding axis. After mixing via model (1),
the scatter plot of their mixtures becomes a parallelogram.
After whitening, a rotated version of the original square is
obtained. Then the left task of BSS is to determine a rota-
tion which will replace the square to its original position.
This procedure can be done easily when there are only
two sources, but rather complicated when more than two
sources are involved. This paper is devoted to the geomet-
ric approach to BSS in high dimensions. In this paper, the
observations are always assumed to be pre-whitened and
are denoted by ex.

A basic observation is, when the sources are indepen-
dent, that the sum of their projection length on each axis
is minimized. To see this, consider two independent uni-
formly distributed signals again. The sum of the projection
length of their whitened mixtures is l = AD + DC (see
Fig. 1). This sum is minimized to be A0D0 + D0C0 when
A0D0//e2, which means that the sources are unmixed.

Now we consider this procedure in high dimensions. Let
ei = [0, . . . , 0,1,0, . . . , 0]T, i.e. only the ith element is non-
zero and it takes the value of 1. Thus the projection length
of observations ex in the direction of ei equals to

li ¼ eT
i ex� �max � eT

i ex� �min ¼ exmax
i � exmin

i ð3Þ

where li is often referred to as the range of exi. Thus the fol-
lowing objective function is used:

min LðUÞ ¼
Xm

i¼1

liðUexðtÞÞ s:t: UT U ¼ I ð4Þ

Since the unmixing matrix U must be orthogonal, it can
be factorized as a product of a series of Givens (i.e. Jacobi)
rotation matrices. In geometric, these matrices can be inter-
preted by they rotate the scatter plot of the observations till
they replace it in its original position before mixing. Let Ga

ij

be a Givens matrix, i.e. Ga
ij equals the identity matrix I

except that Ga
ij

h i
ii
¼ Ga

ij

h i
jj
¼ cosðaÞ and Ga

ij

h i
ij
¼

� Ga
ij

h i
ji
¼ sinðaÞ. Note that, after each rotation of

exðkþ1ÞðtÞ  Ga
ijexðkÞðtÞ, only the entries in the ith and jth

rows of exðkÞ are changed, thus the minimization of (4) is
equivalent to minimization of li + lj.

Write exijðtÞ ¼ exiðtÞ; exjðtÞ
� �T

and let Cij denote the con-
vex polygon formed by exijðtÞ. It is obvious that li + lj
equals half of the perimeter of the enclosing rectangle of
Cij whose edges are parallel with the axes (for convenience
we say that this rectangle is parallel with the axes). Note
that the perimeter of any enclosing rectangle of the convex
polygon will not change in rotations. Therefore, to mini-
mize li + lj, first we would locate the minimum-perimeter
enclosing rectangle of Cij, and then we rotate it till it is par-
allel with the axes. See Fig. 2(a), the vertexes of Cij are
marked by ‘�’. Before a rotation, the minimum-perimeter
enclosing rectangle of Cij is A0B0C0D0, thus li + l-

j = AD + DC. When the rectangle A0B0C0D0 is rotated to
be parallel with the axes, as shown in Fig. 2(b), li + lj is
minimized to be A0D0 + D0C0. Since A0B0C0D0 is the mini-
mum-perimeter enclosing rectangle of Cij, A0D0 + D0C0 is
actually a global minimum of the current sub-problem.

There are n(n � 1)/2 distinct Givens rotations (parame-
terized by a), and optimizing a set of these is known as a
sweep. The algorithm often needs only a few sweeps to con-
verge. Now we will consider how to locate the minimum-
perimeter enclosing rectangle. From Theorem 3.2.1 in
[16], at least one edge of the minimum-perimeter enclosing
rectangle coincides with one edge of the polygon, thus we

Fig. 1. The sources are unmixed when the sum of the projection length on
each axis of the observations is minimized.
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may locate the minimum-perimeter enclosing rectangle by
traversing the edges of Cij. The pseudo-code is displayed
as follows:

For k = 1:K
For i = 1:m � 1

For j = i+1:m
Generate Cij from exijðtÞ, and locate the

minimum-perimeter enclosing rectangle R of Cij by
traversing the edges of Cijexðkþ1ÞðtÞ  Ga

ijexðkÞðtÞ where a is the angle
between R and the axis ei

End
End

End

In the time complexity, the complexity of generating the
convex hull Cij is O(TlogT) [17] and the complexity of
locating the minimum-perimeter enclosing rectangle of Cij

is O(n) [16], where n is the number of vertexes with
n� T. Thus the total time complexity is O(Km2T logT),
where K is the number of iterations (sweeps). In our exper-
iments, only 3–10 sweeps are needed, which is very efficient.

3. Discussion

3.1. Improvement of the robustness

In our algorithm the range of a signal is estimated from
its maximum and minimum. To improve the robustness,
after generating the convex polygon Cij, in practice, each
vertex V of Cij would be updated by

V H ¼ 1

m

Xm

k¼1

exðV Þk ð5Þ

where V H ¼ exV H

i ;exV H

j

h iT
and exkðV Þ is the kth nearest point

of V in exij. Note that they need to be calculated only once
because the neighborhood structure will be preserved in

rotations. From Fig. 2(b), the minimum-range estimated
by the proposed algorithm equals to

dH ¼ exF H

i � exEH

i ð6Þ

where
xF H

i � 1
m

Pm
k¼1exiðT � k þ 1Þ; xEH

i � 1
m

Pm
k¼1exiðkÞ; exiðkÞ is the

kth smallest entry of exi. This method is actually equivalent
to the averaged order statistics method [11]. The averaged
order statistics uses the following estimator:

hRH

mi ¼
1

m

Xm

k¼1

RH

k ðxÞ ð7Þ

where

RH

k ¼
D xiðT � k þ 1Þ � xiðkÞ ð8Þ

In fact, by substituting (8) into (7), we have

hRH

mi ¼
1

m

Xm

k¼1

xiðT � k þ 1Þ � 1

m

Xm

k¼1

xiðkÞ ð9Þ

We see that the range estimated by hRH

mi equals the range
estimated by (6) approximately. The selection of m has
been discussed in [11] and we skip it.

3.2. Extension of the proposed approach

The proposed approach together with other geometric
approaches often has poor performance when the finite
sample sequence has few points near the scatter plot cor-
ners. Generally, they can separate the uniformly distributed
sources or close to uniformly distributed sources, digital
communication signals [14], and image signals. Some other
types of available distributions were also discussed in [11].
These signals are often referred to as the sub-Gaussian.

One may want to know about the proposed approach to
the other kinds of signals. A fact is, if the sample sequence
has a few points near the scatter plot corners, the maxi-
mum-range criterion can be used to separate these kinds
of signals, namely,

Fig. 2. Principle of the proposed algorithm.
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max LðUÞ ¼
Xm

i¼1

liðUexðtÞÞ s:t: UT U ¼ I ð10Þ

Fig. 3(a) is the scatter plot of two speech signals, and these
two signals are sparse in a time domain. We see that the
samples scatter in two orthogonal directions, and each
direction is parallel with one axis. The scatter plots of their
mixtures and the whitened mixtures are shown in Fig. 3(b)
and (c), respectively. When a source is extracted success-
fully, its range is maximized. Recall that model (4) is based
on the fact that R(bTs) = |b|TR(s) where R(s) =
[R(s1),R(s2), . . . ,R(sm)]T are the ranges of independent
components. However, this formula does not hold if the
sources are sparse. For sparse signals, the following for-
mula holds:

max RðbT sÞ ¼ RðsÞ ð11Þ

which can be interpreted as follows: since s are sparse, there
is at most only one source being active or dominant at each
time instant t, thus xi(t) = bjsj(t). If the sources are cen-
tered, RðxiÞ ¼ RðbT sÞ ¼ RfbjsjðtÞjj ¼ 1; 2; . . . ; mg, so (11)
holds (note that bTb = 1) and thus (10) yields, see
Fig. 3(a) and (c). Also, the separation of these kinds of sig-
nals may be solved in the framework of classic sparse com-
ponent analysis (SCA).

4. Simulations

The algorithm succeeds in many samples. Here the
signals reported in [10,18] are adopted: s1 is the uniformly
distributed noise, s2 = 0.1sin(400t)cos(30t), s3 = 0.01sign
[sin(500t + 9cos(40t))], and the sample number is 1000.
The sources s, the mixtures x and the separated signals y
are shown in Fig. 4.

We also compare our algorithm with ICAForNDC. For
ICAForNDC, b = 0.75, the iteration number is 20, which
are both recommended by the authors. The signal-to-noise
ratio (SNR) is used as the performance index to evaluate
the separation [1]:

SNRðs; yÞ ¼ 10 log
E½s2�

E½ðy � sÞ2�
ð12Þ

where s and y are normalized random variables with 0-
mean and 1-variance. We run both algorithms 1000 times
on an AMD Athlon 64 (1.8 GHz) processor with 448 MB

Fig. 3. Scatter plot of two speech signals, their mixtures and whitened mixtures.

Fig. 4. The original, mixed and separated signals.

Table 1
Comparison between the proposed algorithm and ICA for NDC.

Algorithms Time (s) SNR (dB)

ICAForNDC 0.48 35.65 39.87 47.78
Proposed algorithm 0.08 35.96 39.97 123.00
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of RAM. The sample number is 10,000 and the mixing ma-
trix is regenerated randomly in each run. Their average per-
formance is listed in Table 1.

From Table 1, the time consumption of the proposed
algorithm is only 1/6 of that of ICAForNDC, while a bet-
ter separation result is obtained.

We also performed experiments on a group of speech
signals (they are sparse in time domain), and the maxi-
mum-range criterion is used. The scatter plot of their mix-
tures x, whitened mixtures u and separated signals y are
shown in Fig. 5(a)–(i), respectively. The corresponding
SNRs are 35.28 dB, 53.45 dB, and 26.67 dB, respectively.
However, it seems that this approach does not have obvi-
ous superiority to k-means-based approaches.

5. Conclusion

The minimum-range is a novel approach for ICA and
BSS. This approach has reliable theoretical foundation.
However, its optimization method, ICAForNDC, lacks
efficiency and reliability.

The new approach is based on the minimum-range
approach and it can be regarded as the batch mode of
the original algorithm. The scatter plot of any two of the
observations forms a convex polygon and its minimum-
perimeter enclosing rectangle determines the rotation
angle. Thus, our method is more efficient and reliable. To
improve the robustness of the algorithm, its relation with
averaged order statistics is also discussed.

The minimum-range approach is simple, but we must
pay attention to the fact that it fails for some signals, for

instance, sparse signals. Although for sparse signals we find
that the maximum range is a solution, the applicability of
the minimum/maximum-range approach needs more
study, and this will be our future work.
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